

**Tutorial Series** 

# Shaft Systems – Starter 2-Stage Gearbox

# **Table of Contents**

| 1. Foreword                             | 2 |
|-----------------------------------------|---|
| 1.1 Aim of the tutorial                 | 2 |
| 1.2 Software Version                    | 2 |
| 1.3 Notes                               | 2 |
| 2. MESYS Shaft Systems                  | 2 |
| 2.1 General                             | 2 |
| 2.2 Description                         |   |
| 3. Software Manual                      | 3 |
| 3.1 Online-Manual                       |   |
| 3.2 Manual as PDF                       |   |
| 4. Project of a Shaft System            | 4 |
| 4.1 Content of the tutorial             | 4 |
| 4.2 Initial situation                   | 4 |
| 4.3 Modelling                           | 5 |
| 4.3.1 Creating the File                 | 5 |
| 4.3.2 Group                             | 5 |
| 4.3.3 Rolling Bearing                   | 6 |
| 4.3.4 Gearings                          | 8 |
| 4.3.5 Correction                        |   |
| 4.3.6 Load                              |   |
| 4.3.7 Optimisation                      |   |
| 5. Calculation                          |   |
| 5.1 Settings                            |   |
| 5.2 Calculation step                    |   |
| 6 Results                               |   |
| 6.1 Overview                            |   |
| 6.2 Overview of Gear Connections        |   |
| 6.2.1 Gear calculation                  |   |
| 6.2.2 Results of gear calculation       |   |
| 6.3 Load spectrum                       |   |
| 6.4 Graphical Representation of Results |   |
| 6.4.1 Specific                          |   |
| 6.4.2 Graphics Menu                     |   |
| 6.4.3 Export                            |   |



# 1. Foreword 1.1 Aim of the tutorial

This starter tutorial for the Shaft Calculation extension <u>MESYS Shaft Systems</u> aims to familiarize users with the functionalities and provide an initial impression of its computational capabilities in analysing aspects related to the use of parallel shafts.

As a limitation, only topics and settings are mentioned or dealt with here, that are appropriate for an assumed familiarity with the product and the exercise content. Please do not hesitate to contact <u>MESYS</u> if you have any questions when using the software.

## **1.2 Software Version**

This tutorial was created with MESYS Shaft Calculation version 12-2024 from 11.02.2025.

### 1.3 Notes

A blue arrow indicates a request to the reader. A green arrow indicates a conclusion or effect.

# 2. MESYS Shaft Systems

### 2.1 General

To get an idea of the possibilities of MESYS shaft systems, we invite you to visit the MESYS website at the specific address for <u>Shaft Systems</u>.



Please consult the corresponding articles on shafts or gears under Home/Downloads/Categories, as illustrated in Figure 2:





# 2.2 Description



MESYS Shaft Systems is a software extension to MESYS Shaft Calculation. This makes it possible to display parallel and coaxial shafts in groups and to assign further relationships, connections, conditions or loads to them. This makes it possible to analyse the general dynamic and static states of a gear system or specific resulting bearing states.

With an additional license, gear calculations (<u>Cylindrical gear pairs</u>) based on corresponding standards (ISO 21771-1 / ISO 6336) can be carried out.



Figure 4

# **3. Software Manual** 3.1 Online-Manual

The software onlinemanual can be accessed via the user interface by selecting the "Help" menu under "Manual F1" (Fig. 5).

You can open the online manual locally at any time with position-specific content directly via your F1 keyboard or find it via the website.



## 3.2 Manual as PDF

The software manual can also be found as a PDF file in the main languages within the MESYS installation directory (Figure 6).

| File Home Share                                                                        | View                                |                  |                   |           |
|----------------------------------------------------------------------------------------|-------------------------------------|------------------|-------------------|-----------|
| $\leftrightarrow$ $\rightarrow$ $\checkmark$ $\uparrow$ $\square$ $\rightarrow$ This P | C > Local Disk (C:) > Mesys 12-2024 |                  |                   |           |
|                                                                                        | Name                                | Date modified    | Туре              | Size      |
| > 📌 Quick access                                                                       | MesysHertz64.exe                    | 11/02/2025 16:46 | Application       | 42,710 KB |
| 🗸 🛄 This PC                                                                            | 🚰 MesysManual.exe                   | 11/02/2025 16:46 | Application       | 24,932 KB |
| 3D Objects                                                                             | Te MESYS-Manual.pdf                 | 11/02/2025 10:22 | PDF Document      | 14,142 KB |
| > Deckton                                                                              | i MesysManual-DE.exe                | 11/02/2025 16:46 | Application       | 24,890 KB |
| > Desktop                                                                              | Te MESYS-Manual-DE.pdf              | 11/02/2025 16:43 | PDF Document      | 14,080 KB |
| > Documents                                                                            | MesysManual-JA.exe                  | 11/02/2025 16:46 | Application       | 24,822 KB |
| > 👆 Downloads                                                                          | MESYS-Manual-JA.pdf                 | 11/02/2025 10:30 | PDF Document      | 11,462 KB |
| > 🁌 Music                                                                              | MesysManual-KO.exe                  | 11/02/2025 16:46 | Application       | 24,983 KB |
| > 📰 Pictures                                                                           | MESYS-Manual-KO.pdf                 | 10/02/2025 08:46 | PDF Document      | 11,286 KB |
| > 😽 Videos                                                                             | MesysRBC64.exe                      | 11/02/2025 16:46 | Application       | 46,888 KB |
| > Han Local Disk (C)                                                                   | MesysReport64.dll                   | 11/02/2025 16:47 | Application exten | 370 KB    |
| >                                                                                      | MesysShaft64.exe                    | 11/02/2025 16:46 | Application       | 59,980 KB |

· Inner and outer geometry can be defined independently

Figure 6

MESYS Axial-Radial-Rollerbearings



# **4. Project of a Shaft System** 4.1 Content of the tutorial

An existing 2-stage reduction gearbox is to be used in a new application and its suitability is therefore to be tested. For this common task, MESYS shaft systems are to be used to investigate its suitability and to find the potential for spatial optimization.



### Figure 7

## 4.2 Initial situation

The current 2-stage gearbox, consisting of 3 shafts, is allegedly defined as follow:



| Shaft   | Element           | Name   | Position X | Parameter Table 1             |
|---------|-------------------|--------|------------|-------------------------------|
| Shaft 1 | Coupling          | Input  | 10         | Mx = 20Nm                     |
|         | Gear              | V1     | 85         | mn=1, α=20, b=20, z=25        |
|         | Rolling bearing   | B1     | 60         | Deep groove ball bearing 6204 |
|         | Rolling bearing   | B2     | 140        | Deep groove ball bearing 6204 |
| Shaft 2 | Gear              | V2     | 35         | mn=1, α=20, b=20, z=60        |
|         | Gear              | V3     | 65         | mn=1.5, α=20, b=25, z=20      |
|         | Rolling bearing   | B3     | 10         | Deep groove ball bearing 6205 |
|         | Rolling bearing   | B4     | 90         | Deep groove ball bearing 6205 |
| Shaft 3 | Gear              | V4     | 65         | mn=1.5, α=20, b=25, z=50      |
|         | Rolling bearing   | B5     | 10         | Deep groove ball bearing 6206 |
|         | Rolling bearing   | B6     | 90         | Deep groove ball bearing 6206 |
|         | Reaction coupling | Output | 140        |                               |



## 4.3 Modelling

#### 4.3.1 Creating the File

The first step is to analyse the existing gearbox in the current configuration and with the current loads.

 $\rightarrow$ 

Start the MESYS shaft calculation or open a new file via the "New" icon or the File menu item and select 'New' (Figure 8)

The project for the shaft calculation can be given a name and a description under 'System' (Figure 9).



Figure 8



#### 4.3.2 Group

Separate groups are required to calculate parallel shafts.



Please assign 3 groups via the context menu.

Please assign one shaft each and assign the corresponding names (Figure 12).

Graphics Extras File Calculation Report Help Shafts Add Group Group 🗋 🗁 💾 🍕 Group 2 Add Coaxial Group Add Planetary Group Group 3 System Positioning Add elastic part as housin System Import shaft system Shaft Export shaft system Add Group Group 1 Export geometry Add Coaxial Group Group 2 Sort groups and shafts Group 3 Add Planetary Group Cylindrical gearbox Add s ositioning Planetary gearbox Add elastic part as housing Figure 10 Figure 11

Please note that you can alternatively assign a ready to use 'Cylindrical gearbox' system via the context menu on 'Shafts' (Figure 11).







Check and compare your shaft geometry with section <u>4.3 Initial Situation</u> by hovering the mouse over the interested shaft segment for a moment (Figure 13).

# 4.3.3 Rolling Bearing

| 4.5.5.1 5000000                                                                                                                                          |                                                                                                                                        |                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| File Calculation Report Gra                                                                                                                              | phics Extras Help                                                                                                                      |                                                                               |
| 🗋 🗁 💾 🚳 🐻                                                                                                                                                | <b>.</b>                                                                                                                               |                                                                               |
| System B<br>System<br>Shafts<br>Group 1<br>Shaft 1<br>Group 2<br>Shaft 2<br>Group 3<br>Shaft 3<br>Bearings<br>Bearing<br>Positioning<br>Gear connections | Select 'Shaft 1' in the system tree,<br>right with ' ' and<br>select the type<br>'Rolling bearing' in<br>the dropdown on<br>the right. | assign an element under the 'Supports' tab on the                             |
|                                                                                                                                                          | General Geometry Loading Supports Section<br>Rolling bearing x=0mm, 'Bearing'                                                          | Rolling bearing<br>Support<br>Rolling bearing                                 |
| General Geometry Load                                                                                                                                    | ng Supports Sections Settings                                                                                                          |                                                                               |
| Rolling bearing x=60mm, 'B1.1<br>Name th<br>into pos                                                                                                     | ne rolling bearing and bring it                                                                    | Rolling bearing       Image: Name B1.1       Position       x     60       mm |
| Figure 14                                                                                                                                                |                                                                                                                                        | Type Deep groove ball bearing                                                 |

From here, the rolling bearing module for a specific bearing selection can be accessed via the ' + button at the bottom right, via a window, or in the system tree directly via the representative designation 'B1.1' now shown here (Figure 15).





| General Bearing geome                      | try Bearing configuration                               | on Ma                    | terial and Lu              | brication              | Loadin                   | g Track roller                                                                     |
|--------------------------------------------|---------------------------------------------------------|--------------------------|----------------------------|------------------------|--------------------------|------------------------------------------------------------------------------------|
| Deep groove ball bearing                   |                                                         |                          |                            |                        | ~ 🔶                      | Select bearing from database                                                       |
| Inner diameter                             |                                                         | d                        | 20                         | m                      | m 🛟 🗠                    | Dynamic load rating                                                                |
| Outer diameter                             |                                                         | D                        | 47                         | m                      | m 🔂 🖸                    | Static load rating COr 0 kN                                                        |
| Manufacturer                               | name                                                    | di (mm                   | ] De [mm]                  | B [mm]                 | C [kN] ^                 | Fatigue load limit Cur 0 kN                                                        |
| SKF *6204-2ZN                              | IR                                                      | 20                       | 47                         | 14                     | 13.5                     | Bearing clearance User input as operating clearan.                                 |
| SKF *6204-22                               |                                                         | 20                       | 4/                         | 14                     | 13.5                     |                                                                                    |
| SKF *6204-2RS                              | L                                                       | 20                       | 4/                         | 14                     | 13.5                     |                                                                                    |
| SKF "0204-2RS                              | H/VA947                                                 | 20                       | 47                         | 14                     | 13,5                     |                                                                                    |
| SVE \$6204-2RS                             | E/C5GIN7                                                | 20                       | 47                         | 14                     | 12.5                     | Under the 'Bearing geometry' tab, as-                                              |
| SKF *6204-2RS                              | E/C3GIN7                                                | 20                       | 47                         | 14                     | 13.5                     | sign a 'Deep groove ball bearing' under                                            |
| GMN HY 6204                                | 1/050147                                                | 20                       | 47                         | 14                     | 13.9                     | the specification 'Select bearing from                                             |
| GMN 6204                                   |                                                         | 20                       | 47                         | 14                     | 13.9                     | database'. Select generic bearings with                                            |
| Generic 6204                               |                                                         | 20                       | 47                         | 14                     | 1                        | the designation from Table 1                                                       |
| <                                          |                                                         |                          |                            |                        | >                        | Figure 16                                                                          |
| File Calculation Report                    | Graphics Extras Help                                    | 0                        |                            |                        |                          |                                                                                    |
| 🗋 🗁 💾 🚳 属                                  |                                                         |                          |                            |                        |                          |                                                                                    |
| ystem 🗗                                    |                                                         |                          |                            |                        |                          |                                                                                    |
| System                                     |                                                         |                          |                            |                        |                          |                                                                                    |
| ✓ Sharts ✓ Group 1                         |                                                         |                          |                            |                        | 16                       |                                                                                    |
| Shaft 1                                    |                                                         |                          |                            |                        |                          |                                                                                    |
| Shaft 2                                    |                                                         |                          |                            |                        |                          |                                                                                    |
| ✓ Group 3<br>Shaft 3                       |                                                         |                          |                            |                        |                          |                                                                                    |
| ✓ Bearings<br>R1 1 'Generic                |                                                         |                          | _                          |                        |                          |                                                                                    |
| B1.2 'Generic                              | General Geometry                                        | Loadin                   | g Supp                     | orts S                 | ections                  | Settings                                                                           |
| > Gear connections                         | Rolling bearing x=60m                                   | nm, 'B1.1'               |                            |                        |                          | Rolling bearing                                                                    |
|                                            | Nothing Dearing x= 140                                  | nin, 01.2                |                            |                        |                          | Position x 140 mm 🧔 🔿                                                              |
|                                            |                                                         |                          |                            |                        |                          | Type Deep groove ball bearing (Generic 6204)                                       |
|                                            |                                                         |                          |                            |                        |                          | Shaft connected to inner ring v                                                    |
|                                            | For the                                                 | 3 sha                    | afts, d                    | esig                   | n the                    | respec-                                                                            |
|                                            | tive righ                                               | t-har                    | nd bea                     | aring                  | as a t                   | 'Geometry, Material, Temperature, Lubrication' is connected                        |
|                                            | boar                                                    | ing o                    | nd do                      | activ                  |                          | Use extended calculation model                                                     |
|                                            | Deal                                                    | iiig a                   | nu ue                      | activ                  |                          | Shaft is supported radially                                                        |
|                                            | sup                                                     | port                     | as sh                      | own                    | on th                    | e right.                                                                           |
| Figure 17                                  |                                                         |                          |                            |                        |                          | L. Shart is supported axially to the right                                         |
| For the such as like to calcula            | e purposes o<br>s 'bearing cle<br>refer you to<br>tion. | of thi<br>earan<br>the S | s tuto<br>ce' or<br>Starte | orial,<br>rela<br>r Tu | plea<br>ated f<br>torial | se leave bearing settings<br>its untouched. We would<br>Basics for rolling bearing |
| Assigr<br>and as                           | the remaini<br>sign the corre                           | ing ro<br>espoi          | olling<br>nding            | bea<br>nam             | rings<br>nes.            | for all shafts (Figure 18)                                                         |
| 1.3.3.2 Lubrica                            | nt                                                      |                          |                            |                        |                          |                                                                                    |
|                                            | accian tha lu                                           | hrica                    | nt (E:                     | a                      | 101.                     |                                                                                    |
| File Calculation Report Graph              | hics Extras Help                                        | DITC                     | ווונ (דו                   | gure                   | 19).                     |                                                                                    |
|                                            |                                                         |                          |                            |                        |                          |                                                                                    |
| System 🗗                                   | mesus                                                   | 5                        |                            |                        |                          | Shaft Calculation Figure 1                                                         |
| ✓ Shafts<br>> Group 1                      | ingineering Consulting Software                         |                          |                            |                        |                          |                                                                                    |
| > Group 2<br>> Group 3                     | Project name 2-Stage G                                  | Gearbox                  |                            |                        |                          |                                                                                    |
| ✓ Bearings<br>B1.1 'Generic 6204'          | Calculation description Starter Tu                      | itorial Shaft S          | Systems                    |                        |                          |                                                                                    |
| B1.2 'Generic 6204'<br>B2.1 'Generic 6205' | Settings Lubrication Dis                                | play settings            |                            |                        |                          |                                                                                    |
| B2.2 'Generic 6205'                        | ISO VG 100 mineral oil                                  |                          |                            |                        |                          | Of lubrication without on-line filter ISO4406 -/17/14 Figure 19                    |



#### 4.3.4 Gearings

4.3.4.1 Cylindrical gears

Select Shaft 1 in the System tree, assign an element under the 'Load' tab with ' 💠 ' and select the 'Spur gear' type in the dropdown on the right (Figure 20).



Complete all gearing parameters for the remaining shafts (Fig. 21).



The gears are not aligned with each other (Figure 23).



Figure 24

#### 4.3.4.2 Gear connections

In the next step, the gearings must be assigned and brought into engagement. The 'Gear connections' window can be accessed under the system tree (Figure 25).

Gear connections

| File Calculation Report Gra | phics Extras Help                          |         |          |         |     |     | S.  |           |     |     |   |          |
|-----------------------------|--------------------------------------------|---------|----------|---------|-----|-----|-----|-----------|-----|-----|---|----------|
| 🗋 🗁 💾 🚳 📑 🔚                 | ¢.                                         |         |          |         |     |     |     |           |     |     |   |          |
| System 🗗                    | <ul> <li>Cylindrical gear pairs</li> </ul> | T1 [Nm] | T2 [Nm]  | SF1     | SF2 | SH1 | SH2 | wmax/wavg |     | _   |   | <b>B</b> |
| ✓ System                    | GearPair                                   | -       | -        |         |     |     |     |           |     |     | 2 |          |
| ✓ Shafts                    | GearPair                                   | -       |          |         |     |     |     |           |     |     |   |          |
| ✓ Group 1                   | Planetary gear sets                        | T1 [Nm] | T2 [Nm]  | T3 [Nm] | SF1 | SF2 | SF3 | SH1       | SH2 | SH3 |   |          |
| Shaft 1                     | Bevel gear pairs                           | T1 [Nm] | T2 [Nm]  | SF1     | SF2 | SH1 | SH2 |           |     |     |   |          |
| ✓ Group 2                   | Worm gears                                 | T1 [Nm] | T2 [Nm]  | SF      | SH  | SW  | ST  | SB        |     |     |   |          |
| Shaft 2                     | Couplings                                  | T1 [Nm] | T2 [Nm]  |         |     |     |     |           |     |     |   |          |
| ✓ Group 3                   | Belt connections                           | Smin    | Fmin [N] |         |     |     |     |           |     |     |   |          |
| Shaft 3                     |                                            |         |          |         |     |     |     |           |     |     |   |          |
| ✓ Bearings                  |                                            |         |          |         |     |     |     |           |     |     |   |          |
| B1.1 'Generic 6204'         |                                            |         |          |         |     |     |     |           |     |     |   |          |
| B1.2 'Generic 6204'         | 0.01                                       |         |          |         |     |     |     |           |     |     |   | x        |
| B2.1 'Generic 6205'         | Shaft                                      |         |          |         |     |     |     |           |     |     |   | EZ       |
| B2.2 'Generic 6205'         | Shaft 2                                    |         |          |         |     |     |     |           |     |     |   | z, 1     |
| B3.1 'Generic 6206'         |                                            |         |          |         |     |     |     |           |     |     |   | z        |
| B3.2 'Generic 6206'         | P [W]                                      |         |          |         |     |     |     |           |     |     |   | <u> </u> |
| Positioning                 |                                            |         |          |         |     |     |     |           |     |     |   | z×       |
| Gear connections            | n1 [rpm]                                   |         |          |         |     |     |     |           |     |     |   | 17x      |

Activate 2 gear pairs ('GearPair') using the ' 💠 ' button, as shown in Figure 23.

The shafts and gears in contact can be defined here, and the basic data for the gear pair is displayed. In addition to the individual shaft inputs, the gear data can also be modified in this window. However, through this connection, the data for both gears can be adjusted simultaneously (Fig. 26).

Connect the two gear pairs as shown in Figure 26 and select appropriate colours for them.

| iearPair 1                |                |    |              |   |    | GearPair 2                |          |                |     |           |     |    |
|---------------------------|----------------|----|--------------|---|----|---------------------------|----------|----------------|-----|-----------|-----|----|
|                           | Color          |    | Color        |   |    |                           | C        | olor           |     | Co        | lor |    |
| Shaft                     | Welle 1        | ~  | Welle 2      | ~ | ]  | Shaft                     | Welle 2  |                | ~   | Welle 3   |     | ~  |
| Gear                      | V1             | ~  | V2           | ~ |    | Gear                      | V3       |                | ~   | V4        |     | ~  |
| Position                  | 85             |    | 35           |   | mm | Position                  | 65       |                |     | 65        |     | mm |
| Number of teeth           | 25             |    | 60           |   |    | Number of teeth           | 20       |                |     | 50        |     |    |
| Width                     | 20             |    | 20           |   | mm | Width                     | 25       |                |     | 25        |     | mm |
| Profile shift coefficient | 0              |    | -6.48191E-15 |   |    | Profile shift coefficient | 0        |                |     | 0         |     |    |
| Normal module             | mr             | 1  | mm           |   |    | Normal module             |          | mn             | 1.5 | r         | nm  |    |
| Normal pressure angle     | α <sub>n</sub> | 20 | •            |   |    | Normal pressure angle     |          | α <sub>n</sub> | 20  | •         |     |    |
| Helix angle               | β              | 0  | •            |   |    | Helix angle               |          | β              | 0   | •         |     |    |
| Helix direction           | Spur gear      | ~  | Spur gear    | v |    | Helix direction           | Spur gea | ır             | ~   | Spur gear |     | ~  |
| Center distance           | а              | 0  | mm           |   |    | Center distance           |          | а              | 0   | r         | nm  |    |

Figure 23

Figure 25





Leave the remaining gear-specific parameters and calculation modes unchanged for the scope of this tutorial.

A series of input and output fields refer to parameters for the design of gearing. For general gear calculations, we are happy to refer to specific training materials.

At this point, the <u>coordinates of all groups</u> are still set to zero. In the right-hand window of the gear connection dialog, all groups are there-fore displayed at the coordinate origin (Figure 27).

#### 4.3.4.3 Positioning of the Gearings

The groups should now be aligned relative to Group 1 according to the gear connections. The 'Positioning' window can be activated under the

system tree (Figure 28). Positioning can be carried out based on various criteria, such as the relationship between gears or groups.



As a result, the groups have now been aligned, which can also be called up in the right-hand window of the 'Gear connections', 'Positioning' and also in the window for 'Shafts' via the System tree (Figure 29).



#### The <u>coordinates of the groups</u> or shafts can also be viewed numerically via the Group 1-3 system tree and then by selecting the 'Group' tab on the far right.

#### 4.3.5 Correction

Figure 29 also shows that the shafts are positioned too close to each other and the roller bearings collide. For the purposes of the tutorial, let's assume that the documentation of the gearing of the analysed gearbox was incorrect. We therefore correct the module in the two gearings in a suitable manner (Figure 30).

Correct the module for V2 & V2 to 1.25 and for V3 & V4 to 1.75.

| Name V1                                                      |   |    |               |               | Name V2                                         |   |    |               |      |          |
|--------------------------------------------------------------|---|----|---------------|---------------|-------------------------------------------------|---|----|---------------|------|----------|
| Position                                                     | x | 85 | mm            | <b>(</b>      | Position                                        | x | 35 | m             | m 🗇  | 4        |
| Width                                                        |   | 1  | b 20          | mm            | Width                                           |   | ł  | 20            |      | m        |
| Number of teeth                                              |   | 1  | 25            |               | Number of teeth                                 |   | z  | 60            |      |          |
| Normal module                                                |   | ,  | mn 1.25       | mm            | Normal module                                   |   | r  | nn 1.2        | 5    | m        |
|                                                              |   |    |               | 1             |                                                 |   |    | 3             |      | -        |
| Name V3                                                      | x | 65 | mm            | •             | Name V4                                         | x | 65 | m             | m (= |          |
| Name <mark>V3</mark><br>Position<br>Width                    | x | 65 | mm 25         | <b>* *</b> mm | Name V4<br>Position<br>Width                    | x | 65 | m             | m    | m        |
| Name <mark>V3</mark><br>Position<br>Width<br>Number of teeth | x | 65 | mm 25<br>z 20 | <b>*</b>      | Name V4<br>Position<br>Width<br>Number of teeth | x | 65 | m<br>25<br>50 | m 👍  | <b> </b> |







The correction for the gearing and subsequent positioning was successfully carried out (Figure 31).

#### 4.3.6 Load

4.3.5.1 Torque

The designed input torque for the current gearbox according to  $\underline{\text{Table}}$ <u>1</u> is 20 Nm.

Select 'Shaft 1' in the system tree, assign an element under the 'Loading' tab with ' 
 ' and select the type "Clutch' from the dropdown on the right (Figure 32). Assign the corresponding name.





The direction of torque can be defined either by its sign or by selecting 'Shaft is driven' / 'Shaft is driving'. Leave this at 'Own input'.

Select 'Shaft 3' in the system tree, assign an element under the 'Supports' tab with ' + and select the type 'Coupling for reaction torque' from the dropdown on the right (Figure 33). Assign the corresponding name.

| -                                                                                                                                                             |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 33                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| File Calculation Report Grap                                                                                                                                  | ohics Extras Help                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| 🗋 🗁 💾 🚳 遇 🔚                                                                                                                                                   | 5                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| System B<br>System<br>Shafts<br>Group 1<br>Shaft 1<br>Group 2<br>Shaft 2<br>Group 3<br>Shaft 3<br>Bl.1 'Generic 6204'                                         | General Geometry Loading Supports                                                                               | Sections Settions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ନ୍<br>ହ<br>ଭ<br>ଭ<br>ଶ<br>ଶ<br>* |
| B1.2 'Generic 6204'<br>B2.1 'Generic 6205'<br>B2.2 'Generic 6205'<br>B3.1 'Generic 6206'<br>B3.2 'Generic 6206'<br>Positioning<br>♥ Gear connections<br>V1-V2 | Rolling bearing x=10mm, 'B3.1'<br>Rolling bearing x=90mm, 'B3.2'<br>Coupling reaction moment x=140mm, 'Reaction | n coupling'       | Coupling for reaction torque           Image: Coupling for reaction coupling           Image: Coupling for reaction coupling | x 140 mm (= )<br>b 0 mm          |

Please note that the display width of a coupling, as well as its activation in modal analysis for the 'Coupling for reaction torque', has no relevance for this calculation.

#### 4.3.6.2 Rotational speed

Before the calculation can be activated, the gearbox should be assigned the usual input speed.



Select 'Shaft 1' in the system tree

and assign a speed of 1000 rpm

under the 'General' tab (Figure

This concludes the input of the

representation of this gearbox.

parameters for the mathematical

34).

4.3.7 Optimisation



It is assumed that, within the scope of the preceding task, the total height of the gearbox needs to be limited due to spatial

constraints in the application. One possible approach could be relocating Group 2 and Group 3.





The optimisation to save vertical space was successful (Figure 42).

Figure 42

Group 1



# 5. Calculation

## 5.1 Settings

For gear calculations, the "required service life H" should be defined in the 'Settings' window of the system tree/system if possible (Figure 43). This value is considered not only in the evaluation of the gearing but also in the calculation of shaft strength according to DIN 743. For further information, please refer to the manual under <u>Required Life</u> and <u>Strength Calculation</u>.

| File Calculation Report Gra                | aphics Extras Help                                     |                                     |                          |                                               |
|--------------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------|-----------------------------------------------|
| 🗋 🗁 💾 🔇 📑 🕯                                |                                                        |                                     |                          |                                               |
| System 🗗                                   | MOCUE                                                  |                                     |                          |                                               |
| ✓ System                                   | 1116202                                                | Shaf                                | t Calculation            |                                               |
| ✓ Shafts                                   | Engineering Consulting Software AG                     |                                     |                          |                                               |
| ✓ Group 1                                  |                                                        |                                     |                          |                                               |
| Shaft 1                                    | Project name 2-Stage Gearbox                           |                                     |                          |                                               |
| ✓ Group 2                                  |                                                        |                                     |                          |                                               |
| Shaft 2                                    | Calculation description Starter Tutorial Shaft Systems |                                     |                          |                                               |
| ✓ Group 3                                  | Cattings Lubrication Disclassical                      |                                     |                          |                                               |
| Shaft 3                                    | Settings Lubrication Display settings                  |                                     |                          |                                               |
| Bearings<br>B1.1 'Generic 6204'            | Consider weight                                        | 🕂 Housing r                         | material Steel           | ~ 🔶                                           |
| B1.2 'Generic 6204'                        | Angle for weight                                       | β <sub>w</sub> -90 Housing t        | emperature               | T <sub>h</sub> 20 *C                          |
| B2.2 'Generic 6205'                        | Calculate natural frequencies                          | Required                            | ife                      | H 20000 h                                     |
| B3.1 'Generic 6206'<br>B3.2 'Generic 6206' | Consider gyroscopic effect                             | 😔 Bearing re                        | liability                | S 90 %                                        |
| Positioning                                | Maximum frequency                                      | f <sub>max</sub> 1000 Hz Strength c | alculation               | Infinite life according DIN 743 $\qquad \lor$ |
| V1-V2                                      | Consider gears as stiffness                            | Increase shaft diameter $\sim$      | sition                   | Definition for each bearing $\checkmark$      |
| V3-V4                                      | Consider gears as point load                           | Gear is load only                   | mations                  | According Hutchinson                          |
|                                            |                                                        | Increase shaft diameter             |                          | -                                             |
|                                            | Consider housing stiffness                             | 3D-model using central nodes        | er nonlinear shaft model |                                               |
|                                            |                                                        | 3D-model                            |                          | Figure 42                                     |
|                                            |                                                        | 3D-model with teeth                 |                          | Figure 43                                     |
|                                            |                                                        | L                                   | 4                        |                                               |

Additionally, a selection should be made for the possible settings under "Consider gears as stiffness" (Figure 43). For example, when selecting 'Increase shaft diameter', the shaft diameter is automatically increased to the root circle diameter plus 0.4 \* module. For the root diameter a dedendum of the reference profile of 1.25 is assumed. Please refer to the manual under <u>Consider gears as stiffness</u> for further details on the corresponding settings.

# 5.2 Calculation step

The calculation step can be carried out via the menu item 'Calculation'/Calculate', directly via the icon under the ribbon or simply by pressing F5.

| File | Cal | culation | Report | Graphics | Extras | н |
|------|-----|----------|--------|----------|--------|---|
|      | 9   | Calcula  | te     |          | F      | 5 |

Please start the calculation.

Pay attention to the green tick at the bottom right, which confirms the consistency of the calculation step.

# **6 Results**

### 6.1 Overview

The 'Result overview' at the bottom of the window shows the most important results (Figure 44). Its contents can be configured as required via the menu Extras / Result overview.

| Result overview                          |                                                            |                     |                                                                 |
|------------------------------------------|------------------------------------------------------------|---------------------|-----------------------------------------------------------------|
| Minimal bearing reference life           | minL10rh 11032.4 h Minimal bearing modified reference life | minLnmrh 2269.89 h  | Minimal static safety for bearings (ISO 17956) minS0eff 4.20323 |
| Maximal equivalent stress                | maxSigV 67.7519 MPa Minimal root safety for gears          | minGearSF 2.59302   | Minimal flank safety for gears minGearSH 0.977094               |
| Maximal displacement in radial direction | maxUr 0.0232341 mm Maximal displacement in x               | maxUx 0.00340038 mr | n                                                               |

Figure 44

8

 It becomes evident that by selecting a higher synthetic viscosity and cleanliness class for the lubricant, the modified reference service life (Figure 45) could be significantly increased to the <u>value H</u>.



|                                          |              | ISO VG 460 sy | nthetic oil                             |            |              | $\sim$ Oil lubrication without on-line filter ISO4406 -/15/12 |                     |                              |  |  |  |
|------------------------------------------|--------------|---------------|-----------------------------------------|------------|--------------|---------------------------------------------------------------|---------------------|------------------------------|--|--|--|
| Result overview                          |              |               |                                         |            |              |                                                               |                     |                              |  |  |  |
| Minimal bearing reference life           | minL10rh 110 | 032.4 h       | Minimal bearing modified reference life | minLnmrh [ | 31996.5 h    | Minimal statio                                                | safety for bearings | (ISO 17956) minS0eff 4.20323 |  |  |  |
| Maximal equivalent stress                | maxSigV 67.7 | .7519 MPa     | Minimal root safety for gears           | minGearSF  | 2.59302      | Minimal flank                                                 | safety for gears    | minGearSH 1.08441            |  |  |  |
| Maximal displacement in radial direction | maxUr 0.02   | 0232341 mm    | Maximal displacement in x               | maxUx      | 0.00340038 m | nm                                                            |                     |                              |  |  |  |

Figure 45

The results overview also displays results depending on the activated license. In the present example calculation, the gear calculation was activated, even though the corresponding inputs were not edited.

1.03106

Kw

κ,

1

Кна 1.25

Semin 1.4

1

Tip relief

Root relief

Surface roughness flank

Web thickness

Number of meshe

Reversed bending

Mean stress influence factor

Life factor limit for 10<sup>10</sup> cycles

Life factor limit for 1010 cycles

Flank modification (f7Ca)

Contact pattern

Surface roughness root

If the need arises to use the license for spur gear calculation, the gear calculation can be activated as shown in Figure 46 and evaluated based on the relevant input and output data. We would like to refer to additional literature or the manual under <u>Gear connections</u> for further details.

# 6.2 Overview of Gear Connections

General Geometry

Dynamic factor

Mesh load factor

Face load coefficient

Limited pitting allowable

Required safety factor root

Required safety factor flank

Profile modifications compensate deflections

#### 6.2.1 Gear calculation

System

System Shafts

Group 1

Group 3 Shaft 3

Shaft 1 Group 2 Shaft 2

Bearings B1.1 'Generic 6204

B1.2 'Generic 6204'

B2.1 'Generic 6205' B2.2 'Generic 6205'

B3.1 'Generic 6206

B3.2 'Generic 6206 Positioning

Gear connections

V1-V2 V3-V4

Figure 47

The gear calculation can be opened by selecting the gear pair in the system tree under Gear connections (Figure 47). The gear parameters can be edited here, and upon closing the gear calculation, the inputs will be read back into the system.

Reference profile Details for strength

|                          | Co        | lor    |      |         | Color |        |    |
|--------------------------|-----------|--------|------|---------|-------|--------|----|
| Shaft                    | Shaft 1   |        | ~    | Shaft 2 |       | ~      |    |
| Gear                     | V1        |        | ~    | V2      |       | $\sim$ |    |
| Position                 | 85        |        |      | 35      |       |        | mm |
| Number of teeth          | 25        |        |      | 60      |       |        |    |
| Width                    | 20        |        |      | 20      |       |        | mm |
| Profile shift coefficien | it 0      |        |      | 0       |       |        |    |
| Normal module            |           | mn     | 1.25 | 5       | mm    |        |    |
| Normal pressure angle    |           | an     | 20   |         | •     |        |    |
| Helix angle              |           | β      | 0    |         | ]•    |        |    |
| Helix direction          | Spur gear |        | ~    | Spur ge | ar    | $\sim$ |    |
| Center distance          | а         | 53.125 |      | mm      |       |        |    |
| Circumferential backl    | j.        | 0.1    |      | mm      |       |        |    |
| Gear mesh stiffness      |           | cγ     | 20   |         | N/mm/ | μm     | *  |
| Efficiency               |           | n      | 100  |         | %     |        |    |

C. 0

C<sub>f</sub> 0

R<sub>zH</sub> 6

R<sub>z</sub>, 18

b, 0

N<sub>M</sub> 1

YM

Z<sub>NTim</sub> 0.85

No

1

Y<sub>NTim</sub> 0.85

None

Unproven

0

0

6

18

0

1

1

0.85

0.85

~ No

μm

um

um

μm

mm

~

# 6.2.2 Results of gear calculation

In the 'Gear connections' window (Figure 48), the torques, safety factors for bending strength and pitting resistance (SF / SH), as well as the maximum and average load distribution across the face width (wmax / wavg) according to ISO 6336 are displayed for each gearing.

In the lower window, performance data, geometric data, and profile shift factors (x1 / x2) are displayed.

| Helix modification                         |           |             |                 |                                 | None     |      |      |      | ~         |  |
|--------------------------------------------|-----------|-------------|-----------------|---------------------------------|----------|------|------|------|-----------|--|
| System P                                   |           |             |                 |                                 |          |      |      |      |           |  |
| System 1                                   | ✓ Cylind  | rical gear  | pairs T1 [l     | Nm] T2 [Nm]                     | SF1      | SF2  | SH1  | SH2  | wmax/wavg |  |
| <ul> <li>System</li> <li>Shaftr</li> </ul> | V1        | -V2         | 2               | 0.00 48.00                      | 2.65     | 2.77 | 1.22 | 1.31 | 1.10      |  |
| × Group 1                                  | V3        | -V4         | -4              | 8.00 -120.00                    | 2.09     | 2.82 | 1.08 | 1.20 | 1.40      |  |
| Shaff 1                                    | Planet    | ary gear se | ets II[ <br>T11 | Nmj iz (inmj<br>Nasil To (Nasil | 13 [IVM] | 551  | 5F2  | 515  | 211       |  |
| × Group 2                                  | Bever     | jear pairs  | 71.0            | Nmj iz (Nmj<br>Nmj T2 (Nmj      | 201      | 362  | 511  | 302  | CD.       |  |
| Shaft 2                                    | worm      | gears       | T1 ()           | Nmj 12 (Nmj<br>Nmj 12 (Nmj      | 55       | 21   | 244  | 51   | DC        |  |
| Y Group 3                                  | Palt co   | ngs         | . Cani          | ning iz (Ning                   |          |      |      |      |           |  |
| Shaft 3                                    | Delt Co   | mections    | s smi           | n rmin(N)                       |          |      |      |      |           |  |
| ✓ Bearings                                 |           |             |                 |                                 |          |      |      |      |           |  |
| B1.1 'Generic 6204'                        |           |             |                 |                                 |          |      |      |      |           |  |
| B1.2 'Generic 6204'                        |           |             |                 |                                 |          |      |      |      |           |  |
| B2.1 'Generic 6205'                        |           | V1-V2       | V3-V4           |                                 |          |      |      |      |           |  |
| B2.2 'Generic 6205'                        | Shaft 1   | Shaft 1     | Shaft 2         |                                 |          |      |      |      |           |  |
| B3.1 'Generic 6206'                        |           |             |                 |                                 |          |      |      |      |           |  |
| B3.2 'Generic 6206'                        | Shaft 2   | Shaft 2     | Shaft 3         |                                 |          |      |      |      |           |  |
| Positioning                                | P [W]     | 2094.4      | 2094.4          |                                 |          |      |      |      |           |  |
| Gear connections                           | · ·       |             |                 |                                 |          |      |      |      |           |  |
| V1-V2                                      | n1 [rpm]  | 1000        | -416.667        |                                 |          |      |      |      |           |  |
| V3-V4                                      | n2 [rpm]  | -416.667    | 166.667         |                                 |          |      |      |      |           |  |
|                                            | - topolog |             |                 |                                 |          |      |      |      |           |  |
|                                            | u         | 2.400       | 2.500           |                                 |          |      |      |      |           |  |
|                                            | a [mm]    | 53,125      | 61.25           |                                 |          |      |      |      |           |  |
|                                            | a fuund   |             | 0.1125          |                                 |          |      |      |      |           |  |
|                                            | mn [mm]   | 1.25        | 1.75            |                                 |          |      |      |      |           |  |
|                                            | alaba [°] | 20,0000     | 20,0000         |                                 |          |      |      |      |           |  |
|                                            | aibua [ ] | 20.0000     | 20.0000         |                                 |          |      |      |      |           |  |
|                                            | beta [°]  | 0.0000      | 0.0000          |                                 |          |      |      |      |           |  |
|                                            |           | 25          | 20              |                                 |          |      |      |      |           |  |
|                                            | z1        | 20          | 20              |                                 |          |      |      |      |           |  |
|                                            | z2        | 60          | 50              |                                 |          |      |      |      |           |  |
|                                            |           |             |                 |                                 |          |      |      |      |           |  |
|                                            | ×1        | 0.000       | 0.000           |                                 |          |      |      |      |           |  |
| Figure 49                                  | x2        | 0.000       | 0.000           |                                 |          |      |      |      |           |  |
| rigui e 48                                 |           |             |                 |                                 |          |      |      | - 11 |           |  |



### 6.3 Load spectrum

A load spectrum can be entered via the system window under the Settings tab. This allows access to the corresponding input window through the system tree. For more details, please refer to our <u>Shaft Starter Tutorial</u> or the manual under <u>Calculation with load spectrum</u>.

Consider load spectrum

## 6.4 Graphical Representation of Results

#### 6.4.1 Specific

In addition to numerous other graphics available under the Graphics menu for evaluating the gearing, the line load and gap width over position for the current calculation are shown below (Figure 49).



Fn: Normal force

Fht<sup>.</sup>

Force in the transverse plane (here Fbt = Fn)

The gap width indicates the distance between the flanks if the load transfer were to occur at a single point. In the present case, a flank line correction based on a maximum gap width of 0.45  $\mu$ m would not be economically justifiable.

The diagrams (Figure 49) were generated using the <u>Increase shaft diameter</u> setting. Tooth engagement stiffness, shaft stiffness, and bearing stiffness influence these diagrams. Additionally, manufacturing errors and housing stiffness also affect the real gearbox.

#### 6.4.2 Graphics Menu

A large selection of graphical result visualisations is available via the 'Graphics' menu (Figure 50).





The graphics can be docked to the main programme interface with the current outputs and are automatically updated after each calculation (Fig. 51). Drag the graphics into the results overview or under the menu bar.



Figure 51

#### 6.4.3 Export



MESYS wünscht Ihnen eine lehrreiche und gewinnbringende Erfahrung mit unseren Tutorials. Bitte wenden Sie sich bei Unklarheiten, Anregungen oder Fragen, ungehindert an <u>info@mesys.ch</u>.